Electric Transmission

Living With(out) Power

Anna Glynn BE 2353 Fall 2008

Overview

- Utility design overview
- Typical operating parts
- Fundamental laws of electricity
- Effects of natural disasters
- What can the utility do?

A few thoughts

- Electricity is everywhere
- We need abundant, inexpensive and reliable amounts of electricity to lead our modern lives
- Large scale disasters (hurricanes) are inevitable
- Utility systems are exposed to the worst of the elements
- So, how does the system work?

(2) 1 3 ____ 6 4 (5) == == == -+ ⊡

Power Plants

Types of generators

Electric generation fuels

- Production of electric energy involves a generator and some form of mechanical driver
 - Mechanical force is derived from various fuels

Step Up Substation

Substations

- Change voltage from one level to another
- Connect generation plants to the rest of the electric system
- There are two types of substations
- Step-Up
 - Transformer increases voltage to the right transmission level

Step-Down

 Source for distribution lines

Transmission Lines

Transmission lines

- Operate at higher voltages
- Transmit large quantities of power
- Transmit power over large distances

Step Down Substation

Substation components

Distribution Lines

Distribution

 Lines, poles, transformers and other equipment needed to deliver electric power to the customer at the required voltages

Your Home

Utility service ends at the meter

- Meter measures current and voltage over time
- Utility bills customers for kilowatt hours of electric power used

Basic electrical equations

- Ohm's Law:
- □ E = IR
- where E is voltage, I is current, and R resistance
- The power equation is:
- □ P = IE
- where P is power, I is current, and E is voltage
- Let's look at a basic household example

Let's turn on a light bulb

□ P = IE

- Assume a 60 watt bulb
- □ 60 watts = IE
- 60 watts = I(120 volts)
- Where 120 volts is the normal house voltage
- I = 60watts / 120 volts
- I = 0.5 amps consumed

What does the light bulb cost?

- Assume 13 cents is the cost per kilowatt hour
- Assume 5 hours of use per day
- 30 days per month
- Monthly cost of 60 watt light bulb
- (13 cents)(5 hours)(30 days)(60 watts)/1000 = \$1.17
- We can use these equations to estimate monthly electric costs

What does it cost to be without?

Galveston Island, Hurricane Ike

Conclusions

- Mother nature cannot be controlled
- We can
 - Trim trees near lines
 - Strengthen existing exposed line structures
 - Explore option for more underground lines
 - Report outages to local utility
 - Encourage reliability improvement at the utility level...and be willing to pay for it
 - Have flashlights and patience!

Questions?

